Structure Elucidation of the Macrocyclic Antibiotic Lipiarmycin

Alberto Arnone and Gianluca Nasini *
Dipartimento di Chimica del Politecnico, Centro del C.N.R. per le Sostanze Organiche Naturali, Politecnico di Milano, Piazza L. da Vinci 32, 20133 Milano, Italy Bruno Cavalleri
Lepetit Research Center, Via Durando 38, 20158 Milano, Italy

Abstract

By a combination of chemical degradations and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. studies, the structure of the antibiotic lipiarmycin, produced by Actinoplanes deccanensis, has been elucidated. The molecule contains two glycosyl moieties, namely $2-O$-methyl-4-O-homodichloro-orsellinate- β-d-rhamnose and 4-O-isobutyrate-5-methyl- β-rhamnose, attached to a 18 -membered unsaturated lactone ring.

Lipiarmycin, an antibiotic produced by fermentation of a strain of Actinoplanes, ${ }^{1}$ is active mainly against gram-positive bacteria and particularly against strains of cariogenic Streptococcus mutans. ${ }^{2}$ It inhibits the growth of susceptible bacteria by interfering with RNA synthesis. ${ }^{3}$ Preliminary investigation led to the identification of six aliphatic moieties, one 5 -methyl-β-rhamnose unit, and one $2-O$-methyl-4- O-homodichloro-orsellinate- β-rhamnose unit. ${ }^{4}$ In this paper we describe the complete structure elucidation of lipiarmycin on the basis of new chemical evidence and ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. experiments.

Reverse-phase thin-layer chromatography (t.l.c.) and highperformance liquid chromatography (h.p.l.c.) show that lipiarmycin is a mixture of two main components, designated A3 and A4 and present in a $3: 1$ ratio, which were separated by flash chromatography. Examination of the ${ }^{1} \mathrm{H}$ n.m.r. spectra of the two compounds indicated that factor A3 (1a) only differs from factor A4 (2) in that the ethyl group on the phenyl moiety is replaced by a methyl group (see Figure 1 and Table 2). In addition, by mild $\mathrm{KOH}-\mathrm{MeOH}$ hydrolysis of lipiarmycin A4

(la) $R^{1}=\stackrel{7}{\mathrm{C}^{+}} \mathrm{H}_{2}-\stackrel{8 \cdot}{\mathrm{Me}}$: $\mathrm{R}^{2}=\mathrm{H}$
(ib) $R^{1}=\mathrm{CH}_{2}-\mathrm{Me}: \mathrm{R}^{2}=\mathrm{Ac}$
(1c) $R^{1}=\mathrm{CH}_{2}-\mathrm{Me}: \mathrm{R}^{2}=\mathrm{PhCO}$
(2) $R^{1}=M e \quad: R^{2}=H$

Figure 1.

Table 1. Carbon and proton counts for lipiarmycin A3 (1a) from ${ }^{13} \mathrm{C}$ and ${ }^{1} \mathrm{H}$ n.m.r. data

${ }^{13} \mathrm{C}$ N.m.r.	${ }^{1} \mathrm{H}$ N.m.r.	$\overbrace{\text { carbons }}^{\text {Num }}$	er of protons	Carbon assignment
$11 \times \mathrm{CH}_{3}$	$1 \times\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$	11	6	$10^{\prime \prime \prime}$ and $11^{\prime \prime \prime}$
	$1 \times\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$		6	$6^{\prime \prime \prime}$ and $7^{\prime \prime \prime}$
	$2 \times \mathrm{CH}_{3} \mathrm{CH}_{2}$		6	22 and 8 "
	$2 \times \mathrm{CH}_{3} \mathrm{CH}$		6	26 and 7'
	$3 \times \mathrm{CH}_{3} \mathrm{C}=$			20, 23, and 24
$4 \times \mathrm{CH}_{2}$	$4 \times \mathrm{CH}_{2}$	4	8	6,16,21, and $7^{\prime \prime}$
$2 \times \mathrm{CH}$	$2 \times \mathrm{CH}$	2	2	10 and $9^{\prime \prime \prime}$
$6 \times \mathrm{CH}=$	$2 \times \mathrm{CH}=$	6	6	$\begin{aligned} & 3,4,5,9,13 \\ & \text { and } 15 \end{aligned}$
$4 \times C=$		4		$2,8,12$, and 14
		6	2	$\begin{gathered} 1^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}, 4^{\prime \prime}, 5^{\prime \prime}, \\ \text { and } 6^{\prime \prime} \end{gathered}$
$1 \times \mathrm{CH}_{3} \mathrm{OR}$	$1 \times \mathrm{CH}_{3} \mathrm{OR}$	1	3	$6{ }^{\prime}$
$1 \times \mathrm{CH}_{2} \mathrm{OR}$	$1 \times \mathrm{CH}_{2} \mathrm{OR}$	1	2	19
$11 \times$ CHOR	$5 \times \mathrm{CHOH}$	11	10	$\begin{gathered} 7,25,3^{\prime}, 2^{\prime \prime \prime}, \\ \text { and } 3^{\prime \prime \prime} \end{gathered}$
	$3 \times \mathrm{CHOR}$		3	$11,2^{\prime}$, and 5^{\prime}
	$3 \times \mathrm{CHOCOR}$		3	$17,4^{\prime}$, and $4^{\prime \prime \prime}$
$1 \times \mathrm{COR}_{2}$		1		$5{ }^{\prime \prime \prime}$
$2 \times \mathrm{CH}(\mathrm{OR})_{2}$	$2 \times \mathrm{CH}(\mathrm{OR})_{2}$	2	2	1^{\prime} and $1^{\prime \prime \prime}$
$3 \times \mathrm{CO}_{2} \mathrm{R}$		3		$1,8^{\prime}$, and $8^{\prime \prime \prime}$
Total		54	74	

(2), methyl 2,4-dihydroxy-3,5-dichloro-6-methylbenzoate was obtained, confirming the substitution on the aromatic ring (see Experimental). We therefore concentrated our studies on lipiarmycin A3 (1a).

Fast atom bombardment mass spectrometry (f.a.b.-m.s.) of (1a) did not produce significant fragment ions but exhibited, in the positive ion spectrum, the $M \mathrm{Na} 7^{+}$ion at $m / z 1079$ with a less abundant quasi molecular ion $M H 7^{+}$at $m / z 1057$. Thus, the molecular formula previously ${ }^{4}$ assigned to lipiarmycin was revised and a molecular mass of 1056 corresponding to the molecular formula $\mathrm{C}_{52} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{O}_{18}$ assigned to compound (1a).

Analysis of the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra of compound (1a) was fully consistent with the proton and carbon counts, as illustrated in Table 1.

In fact, the fully decoupled ${ }^{13} \mathrm{C}$ n.m.r. spectrum of compound (1a) showed the presence of 52 carbon atoms while the ${ }^{1} \mathrm{H}$ n.m.r spectrum indicated 74 hydrogen atoms, of which seven belong to hydroxy groups as demonstrated by formation of the heptaacetate (1b) upon acetylation with $\mathrm{Py}-\mathrm{Ac}_{2} \mathrm{O}$. The characteristic downfield shift experienced by $7-\mathrm{H}, 25-\mathrm{H}, 3^{\prime}-\mathrm{H}, 2^{\prime \prime \prime}-\mathrm{H}$, and $3^{\prime \prime \prime}-\mathrm{H}$ ($\delta 0.95-1.45$ p.p.m.) (Table 2) permitted us to assign five hydroxy groups at the corresponding carbon atoms, whereas

Table 2. ${ }^{1} \mathrm{H}$ N.m.r. chemical shifts ($\delta_{\mathrm{H}} /$ p.p.m.) for compounds (1a), (1b), (2), (3b), (3c), (14), (15), and (16) in $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone

Proton ${ }^{\text {a }}$	(1a)	(1b)	(2) (3b)	$(\mathbf{3 b})^{\text {b }}$	(3c)	(14)	(15)	(16)	J	(1a)	(1b)	(2)	(3b)	(3c)	(14)	(15)	(16)
3	7.24	7.17	7.24	7.34	7.34	7.39	7.39	7.39	3,4	11.3	11.5	11.3	11.5	11.4	11.3	11.3	11.3
4	6.63	6.66	6.63	6.63	6.74	6.71	6.71	6.69	3,5	0.8	ca. 1	0.8	0.8	0.8	ca. 1	ca. 1	0.8
5	5.96	5.97	5.96	6.14	6.16	6.27	6.28	6.19	3,19a	ca. 0.5	ca. 0.5	ca. 0.5	a	ca. 0.5	${ }^{a}$	${ }^{a}$	ca. 0.5
6a	2.68 ca.	2.7	2.70	2.44	2.59	2.50	2.50	2.73	4,5	14.8	15.0	14.8	15.1	15.1	15.0	15.0	15.0
6b	2.52 ca.	2.6	2.52	2.42	2.57	2.46	2.46	2.50	4,6a	1.8	ca. 2	1.8	a	ca. 1.4	ca. 1	ca. 1	1.8
7	4.28	5.23	4.28	4.06	5.16	4.12	4.12	4.34	4,6b	1.0	ca. 1	1.0	a	ca. 1.4	ca. 1	ca. 1	1.1
9	5.22	4.94	5.22	4.95	5.03	5.22	5.22	5.35	5,6a	4.6	4.8	4.6	ca. 7	ca. 7.5	7.0	7.0	5.0
10	2.63 ca .	2.7	2.63	2.54 ca .	2.5	3.15	3.15	3.21	5,6b	9.4	10.0		ca. 7	ca. 7.5	7.6	7.6	9.3
11	3.73	3.77	3.73	3.61	3.71	5.09	5.07	5.28	6a,6b	a	a	a	ca. 14.8	a	14.0	14.0	15.3
13	5.84	5.98	5.84	5.71	5.79	5.91	5.90	6.13	6a, 7	ca. 4	ca. 4	ca. 4	ca. 7.5	ca. 6.5	6.8	6.8	3.2
15	5.63	5.57	5.63	5.35	5.27	4.44	4.37	5.00	6b,7	ca. 4	ca. 4	ca. 4	ca. 6	ca. 6.5	6.0	6.0	3.6
16a	2.75 ca .	2.7	2.76	2.27 ca.	2.5	1.91	2.34	2.14	7,9	1.6	1.4	1.6	a	1.2	ca. 1	ca. 1	1.7
16b	2.43 ca.	2.4	2.45	2.25 ca.	2.5	1.87	1.75	1.71	7,20	0.6	a	0.6	a	a	a	a	0.6
17	4.74	4.91	4.74	3.65	5.05	3.89	3.89	5.10	9,10	10.4	10.7	10.4	10.6	10.5	9.3	9.3	9.8
19a	4.61	4.59	4.60	4.67	4.66	4.65	4.65	4.60	9,20	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.6
19b	4.43	4.46	4.42	4.49	4.49	4.52	4.52	4.46	10,11	9.6	10.0	9.6	9.3	9.2	9.3	9.3	7.8
20	1.66	1.73	1.66	1.63	1.67	1.69	1.69	1.70	10,21a	a	a	a	3.2	a	7.2	7.2	7.4
21a	1.93	1.75 ca .	1.9	1.83 ca .	1.8	1.35	1.35 ca	1.4	10,21b	a	a	a	9.3	a	7.2	7.2	7.4
21b	1.25 ca .	1.2 ca .	1.2 ca .	. 1.2 ca.	1.2	1.35	1.35 ca .	. 1.4	11,13	0.5	a	0.5	a	0.8	1.3	1.3	1.6
22	0.82	0.75	0.83	0.78	0.76	0.85	0.85	0.87	11,23	,	a	a	a	ca. 0.5	1.6	1.6	1.4
23	1.82	1.83	1.82	1.68	1.64	1.75	1.75	1.91	13,15	1.0	1.0	1.0	a	1.3	1.2	1.2	a
24	1.74	1.86	1.74	1.74	1.74	1.72	1.75	1.75	13,23	1.3	1.3	1.3	1.4	1.4	a	a	ca. 0.5
25	4.05	5.29	4.05	3.83	5.00	3.75	3.75	4.07	13,24	0.5	a	0.5	a	a	1.5	1.5	1.6
26	1.19	1.25	1.19	1.18	1.23	1.19	1.19	1.22	15,16a	7.2	ca. 8	7.2	ca. 7	ca. 7.5	8.8	6.6	11.5
1 '	4.69	4.75	4.68	4.53	4.79	4.69	4.69	4.69	15,16b	9.0	ca. 8	9.0	ca. 7	ca. 7.5	6.7	9.4	3.8
2^{\prime}	3.61	3.79	3.61 ca.	. 3.6	3.81	3.62	3.62	3.61	15,24	1.3	1.4	1.3	1.4	1.4	a	a	a
3^{\prime}	3.81	4.95	3.83	3.58	4.94	3.78	3.78	3.81	16a,16b	14.2	a	14.2	a	a	13.0	12.3	13.0
4^{\prime}	5.11	5.31	5.10	5.06	5.32	5.13	5.12	5.11	16a,17	5.1	7.0	5.1	ca. 6.5	ca. 9.5	5.7	6.7	4.0
5	3.60	3.69	3.63	3.39	3.69	3.59	3.59	3.60	16b,17	4.4	4.6	4.4	ca. 6.5	ca. 5.5	3.4	a	ca. 1
$6{ }^{\prime}$	3.53	3.46	3.52	3.64	3.48	3.55	3.55	3.53	17,25	6.2	5.4	6.2	4.0	4.0	3.8	3.8	ca. 1
$7{ }^{\prime}$	1.32	1.38	1.30	1.40	1.40	1.33	1.33	1.29	19a,19b	11.3	11.8	11.3	11.8	11.5	11.5	11.5	11.5
$7{ }^{\text {7a }}$	3.01	2.81	2.56	2.80	2.82	3.01	3.02	3.06	21a,22	7.3	7.5	7.3	7.3	7.2	7.4	7.4	7.3
7"b	3.01	2.77		2.78	2.78	3.01	3.02	2.99	21b,22	7.3	7.5	7.3	7.3	7.2	7.4	7.4	7.3
$8{ }^{\prime \prime}$	1.22	1.18		1.19	1.19	1.22	1.22	1.19	25,26	6.3	6.5	6.3	6.4	6.4	6.3	6.3	6.5
$1^{\prime \prime \prime}$	4.78	5.06	4.78	4.62	5.01				$1^{\prime}, 2^{\prime}$	0.8	1.0	0.8	1.0	0.9	0.8	0.8	0.8
$2{ }^{\prime \prime \prime}$	3.97	5.42	3.97	4.00	5.44				$2^{\prime}, 3^{\prime}$	3.3	3.3	3.3	a	3.2	3.3	3.3	3.3
$3{ }^{\prime \prime \prime}$	3.74	5.16	3.74 ca .	a. 3.6	5.14				$3^{\prime}, 4^{\prime}$	9.7	10.3	9.7	9.3	10.3	9.8	9.8	9.8
$4{ }^{\prime \prime \prime}$	5.00	5.11	5.00ca.	a. 3.6	5.11				4',5'	9.7	9.6	9.7	9.4	9.6	9.6	9.6	9.5
$6{ }^{\prime \prime \prime}$	1.10	$1.25{ }^{\text {c }}$	1.10	$1.28{ }^{\text {c }}$	1.27°				$5^{\prime}, 7{ }^{\prime}$	6.1	6.2	6.1	6.2	6.2	6.2	6.2	6.1
$7{ }^{\prime \prime \prime}$	1.16	$1.17{ }^{\text {c }}$	1.16	$1.10^{\text {c }}$	$1.17{ }^{\text {c }}$				7"a,7"b	a	14.0		13.5	13.5	a	6.	12.6
$9{ }^{\prime \prime \prime}$	2.57	2.55	2.57						$7{ }^{\prime \prime} \mathrm{a}, 8^{\prime \prime}$	7.3	7.5		7.5	7.5	7.4	7.4	7.3
$10^{\prime \prime \prime}$	$1.16{ }^{\text {c }}$	$1.12{ }^{\text {d }}$	$1.16{ }^{\text {c }}$						$7{ }^{\prime \prime} \mathrm{b}, 8^{\prime \prime}$	7.3	7.5		7.5	7.5	7.4	7.4	7.3
$11^{\prime \prime \prime}$	$1.14{ }^{\text {c }}$	$1.10^{\text {d }}$	$1.14{ }^{\text {c }}$						$1^{\prime \prime \prime}, 2^{\prime \prime \prime}$	1.1	1.4	1.1	1.5	1.4			
${ }^{a}$ Compounds (1a) and (2) exhibited OH resonances at δ_{H} 10.66, 9.30, $4.35,4.05, c a .3 .6, c a .3 .6$, and 3.35 , and at $10.87,9.38,4.35,4.05, c a .3 .6$, ca. 3.6, and 3.35, respectively; compounds (1b) and (3c) exhibited OAc resonances at $\delta_{\mathrm{H}} 2.40,2.28,2.19,2.11,2.05,2.01$, and 1.96 , and at 2.44 , $2.34,2.11,2.10,2.02,2.01,1.98,1.98$, and 1.92 , respectively, and (3c)									$2{ }^{\prime \prime \prime}, 3^{\prime \prime \prime}$	3.3	2.9	3.3	3.1	2.7			
									$3{ }^{\prime \prime \prime} 4^{\prime \prime \prime}$	10.0	10.7	10.0	3.	10.7			
									$9^{\prime \prime \prime}, 10^{\prime \prime \prime}$	6.9	7.0	6.9					
									$9{ }^{\prime \prime \prime}, 11^{\prime \prime \prime}$	6.9	7.0	6.9					
									${ }^{a}$ Not determined.								

the two remaining hydroxy groups were assigned to the homo-dichloro-orsellinate moiety. The assignment of the resonances in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectra of compound (1a) (Tables 2-4) followed from chemical-shift criteria and from ${ }^{1} \mathrm{H}-\left\{{ }^{1} \mathrm{H}\right\}$ and ${ }^{13} \mathrm{C}-\left\{{ }^{1} \mathbf{H}\right\}$ low-power specific decoupling experiments, whereas multiplicities and (C, H) coupling constants were obtained from analysis of fully ${ }^{1} \mathrm{H}$ coupled ${ }^{13} \mathrm{C}$ n.m.r. spectra.

Some reactions were performed on compound (1a) in order to obtain additional structural evidence. Treatment of compound (1a) with KOH gave compound (3a) via opening of a lactone function and removal of an isobutyryl moiety, as depicted in Scheme 1.
F.a.b.-m.s. of compound (3a) indicated a molecular mass of 1004.02 m.u., in agreement with the molecular formula $\mathrm{C}_{48} \mathrm{H}_{70} \mathrm{Cl}_{2} \mathrm{O}_{18}$. Moreover, compound (3a) on treatment with

Table 3. ${ }^{1} \mathrm{H}-\left\{{ }^{1} \mathrm{H}\right\}$ coupling constants (J / Hz) for compounds (1a), (1b), (2), (3b), (3c), (14), (15), and (16)
${ }^{a}$ Not determined.
$\mathrm{CH}_{2} \mathrm{~N}_{2}$ afforded the trimethyl derivative (3b), and with Py$\mathrm{Ac}_{2} \mathrm{O}$ the nona-acetate (3c). The three OMe resonances in compound (3b) have to be ascribed to the methylation of the $\mathrm{CO}_{2} \mathrm{H}$ group formed by hydrolysis of the lactone bond, and of the two phenolic hydroxy groups of the homodichloro-orsellinate unit. On the other hand, the two additional acetate groups in (3c) relative to the hepta-acetate (1b) must arise from the esterification of the new formed 17 - and 4 "'-OH's. The downfield shift of the resonances of the corresponding protons ($\delta c a .1 .5$ p.p.m.) with respect to (3b) confirm their assignment. The ${ }^{1} \mathrm{H}$ n.m.r. data of compounds (3b) and (3c), which are fully consistent with the proposed structures, are given in Tables 2 and 3.

On the basis of the above-described and of the following evidence five fragments (4)-(8), shown in Figure 2, could be identified.

Fragment (4). This fragment was characterized by the number of protons which are located on oxygen-bearing carbon atoms.

Scheme 1. Reagents: i, $0.5 \mathrm{MKOH} ; \mathrm{N}_{2}$

(4)

(5)

(6)

(7)

(8)

Figure 2.

The doublet of quartets at $\delta_{H} 3.60\left({ }^{3} J_{4} \cdot 5^{\prime} 9.7\right.$ and $\left.{ }^{3} J_{5} \cdot .76 .1 \mathrm{~Hz}\right)$, assigned to $5^{\prime}-\mathrm{H}$, served as the starting point in the analysis of this spin system. Its irradiation caused collapse of the 3 H doublet at $\delta_{H} 1.32\left(7^{\prime}-\mathrm{H}_{3}\right)$ to a singlet and simplified the signal at $\delta_{\mathrm{H}} 5.11\left(4^{\prime}-\mathrm{H}\right)$ to a doublet, the remaining trans-diaxial coupling

Table 4. ${ }^{13} \mathrm{C}$ N.m.r. data for lipiarmycin A3 (1a) in $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone

Carbon	$\delta_{\text {c }}{ }^{\text {a }}$ /p.p.m.	${ }^{1} J(\mathrm{CH}) / \mathrm{Hz}$ Carbon	$\delta_{\text {c }} /$ p.p.m.	${ }^{1} J(\mathrm{CH}) / \mathrm{Hz}$
	167.16 S	2 '	81.56 D	146
2	125.39 S	3'	72.35 D	143
3	145.21 D	159 4'	77.60 D	149
4	128.22 D	155 5'	70.62 D	d
5	142.99 D	158 6	61.67 Q	142
6	37.24 T	126 7'	18.16 Q	127.5
7	72.91 D	d $\mathbf{8}^{\prime}$	169.54 S	
8	$136.79^{\text {b }} \mathrm{S}$	$1^{\prime \prime}$	$110.40^{\text {c }} \mathrm{S}$	
9	124.06 D	154 2"	156.11 S	
10	42.08 D	128 3"	$108.27^{\text {c }} \mathrm{S}$	
11	93.19 D	142 4"	153.82 S	
12	$136.02^{\text {b }} \mathrm{S}$	5 "	$114.60^{\text {c }} \mathrm{S}$	
13	133.85 D	149 6"	142.72 S	
14	$135.94{ }^{\text {b }}$ S	7"	26.12 T	130
15	126.46 D	152 8"	14.30 Q	128
16	28.47 T	127 1"'	96.59 D	155
17	78.29 D	148 2"'	72.65 D	d
19	63.46 T	148 3"'	70.28 D	142
20	15.19 Q	125 4"'	75.68 D	148
21	26.45 T	128 5"'	73.78 S	
22	11.10 Q	126 6"'	28.66 Q	127
23	13.78 Q	125 7"'	18.64 Q	127
24	17.44 Q	d $8^{\prime \prime \prime}$	176.78 S	
25	67.96 D	143 9 ${ }^{\prime \prime \prime}$	34.73 D	130
26	20.47 Q	$126.510^{\prime \prime \prime}$	19.33 Q	128
1^{\prime}	101.78 D	156 11"'	19.12 Q	128

${ }^{a}$ Capital letters refer to the pattern resulting from one-bond (C,H) coupling constants; $\mathrm{S}=$ singlet, $\mathrm{D}=$ doublet, $\mathrm{T}=$ triplet, and $\mathrm{Q}=$ quartet. ${ }^{\text {b.c }}$ Assignments within each column may be interchanged. ${ }^{d}$ Not detected.
of 9.7 Hz being due to $3^{\prime}-\mathrm{H}\left(\delta_{\mathrm{H}} 3.81\right)$. The small couplings of 0.8 and 3.3 Hz observed for the equatorially-disposed $2^{\prime}-\mathrm{H}$ must arise from interactions with its neighbouring $1^{\prime}-$ and $3^{\prime}-\mathrm{H}$. The location of the OMe group at C-2' followed from the three-bond (C, H) coupling constant exhibited by the oxygen-bearing C-6' [$\delta_{\mathrm{c}} 61.67 ;{ }^{3} J(\mathrm{CH}) 5.5 \mathrm{~Hz}$] with $2^{\prime}-\mathrm{H}$. Furthermore, irradiation of $1^{\prime}-\mathrm{H}$ in a n.O.e. experiment enhanced, in addition to $2^{\prime}-\mathrm{H}$ $(7 \%), 3^{\prime}-\mathrm{H}$ and $5^{\prime}-\mathrm{H}(4$ and $7 \%)$ indicating that these protons are 1,3 syn-diaxially disposed.

These findings pointed to the presence of a $2-O$-methylrhamnosyl unit adopting a chair conformation, and indicated that it is linked to the rest of the molecule as the β anomer. The one-bond (C, H) coupling possessed by the anomeric $\mathrm{C}-1^{\prime}$ [$\delta_{\mathrm{C}} 101.78 ;{ }^{1} \mathrm{~J}(\mathrm{CH}) 156 \mathrm{~Hz}$] supported the above conclusion. ${ }^{5}$ Its absolute configuration was defined by comparing spectral and physicochemical properties of the methylglycoside diacetate (10 b) $\left([x]_{\mathrm{D}}+64^{\circ}\right.$ in MeOH$)$, obtained by acetylation of compound ($\mathbf{1 0 a}$) (Scheme 2), with those of the corresponding enantiomeric methylglycoside-L-x-rhamnose diacetate $\left([x]_{\mathrm{D}}\right.$ -69° in MeOH$) .^{6}$ In fact, they showed closely similar ${ }^{1} \mathrm{H}$ n.m.r. spectra (Table 5)* but opposite x_{D} values, thus permitting us to assign a $\mathrm{D}-\mathrm{x}$-configuration to (10b). These results, as corroborated by the aforementioned n.O.e. experiment, clearly indicated that this sugar is present in compound (1a) as a β-Drhamnosyl unit. Finally, treatment of compound (1a) with saturated methanolic HCl gave compound (9) which by further treatment with MeONa in MeOH afforded, besides compound (10a), 2,4-dichloro-5-ethylresorcinol (11) (Scheme 2), whose structure has been previously determined. ${ }^{4}$ The three-bond (C, H) coupling exhibited by the ester carbonyl $\mathrm{C}-8^{\prime}\left[\delta_{c} 169.54\right.$; ${ }^{3} J(\mathrm{CH}) 4 \mathrm{~Hz}$] with $4^{\prime}-\mathrm{H}$ confirmed that the homodichloroorsellinic moiety is linked at $\mathrm{C}-\mathbf{4}^{\prime}$.

[^0]

Scheme 2. Reagents: i, HCl-saturated MeOH ; ii, $\mathrm{MeONa}-\mathrm{MeOH}$; iii, $\mathrm{Py}-\mathrm{Ac}_{2} \mathrm{O}$

Fragment (5). The starting point of this spin system was formed by a doublet (${ }^{3} J_{1, \ldots 2}, 1.1 \mathrm{~Hz}$) at $\delta_{\mathrm{H}} 7.8$ which was assigned to $1 " \mathrm{l}-\mathrm{H}$ because it was correlated with the anomeric $\left.\mathrm{C}-1^{\prime \prime}{ }^{[} \delta_{\mathrm{C}} 96.59 ;{ }^{1} J(\mathrm{CH}) 155 \mathrm{~Hz}\right]$. Its irradiation simplified to a doublet the resonance at $\delta_{\mathrm{H}} 3.97\left(2^{\prime \prime \prime}-\mathrm{H}\right)$, the remaining splitting being the vicinal coupling to $3^{\prime \prime \prime}-\mathrm{H}\left({ }^{3} J_{2 \ldots .3} \ldots .3 \mathrm{~Hz}\right)$. The latter, in turn, was trans-diaxially coupled to $4^{\prime \prime \prime}-\mathrm{H}\left(\delta_{\mathrm{H}} 5.00,{ }^{3} J_{3 \cdots, 4}{ }^{\prime \prime}\right.$ $10.0 \mathrm{~Hz})$. Irradiation of the heptet at $\delta_{\mathrm{H}} 2.57\left(9^{\prime \prime \prime}-\mathrm{H}\right)$ collapsed the two 3 H doublets at $\delta_{\mathrm{H}} 1.16$ and $1.14\left(10^{\prime \prime \prime}\right.$ - and $11^{\prime \prime \prime}-\mathrm{H}_{3}$) to a singlet, whilst irradiation of the two doublets caused the multiplet at $\delta 176.78$ due to the $\mathrm{C}-8$ "' ester carbonyl to simplify to a doublet of doublets in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum [${ }^{3} J(\mathrm{CH}) 7$ and 4 Hz], these splittings being removed by irradiation of the protons $4^{\prime \prime \prime}$ - and $9^{\prime \prime \prime}-\mathrm{H}$. These experiments confirmed the presence of the isobutyryl moiety and proved that it is attached at C-4"'. The two singlet methyl groups resonating at $\delta_{\mathrm{H}} 1.10$ and $1.16\left(6^{\prime \prime \prime}-\right.$ and $\left.7^{\prime \prime \prime}-\mathrm{H}_{3}\right)$ were placed at the sole quaternary oxygen-bearing sp^{2}-hybridized carbon atom ($\mathrm{C}-\mathrm{S}^{\prime \prime \prime}$) present in the ${ }^{13} \mathrm{C}$ n.m.r. spectrum of compound (1a). Irradiation of $1^{\prime \prime \prime}-\mathrm{H}$ in an n.O.e. experiment led to enhancement, in addition to $2{ }^{\prime \prime \prime}-\mathrm{H}(6.5 \%)$, of $3^{\prime \prime \prime}-\mathrm{H}$ and $7^{\prime \prime \prime}-\mathrm{H}_{3}$ (4.5 and 2%, respectively) indicating their $1,3-$ syn relationship, whereas irradiation of the equatorially-disposed $6^{\prime \prime \prime}-\mathrm{H}_{3}$ enhanced $4^{\prime \prime \prime}-\mathrm{H}(14 \%)$. These results provided evidence for the presence of a $4-\mathrm{O}$-isobutyrate5 -methyl- β-rhamnosyl unit which adopts a chair confirmation and is β-linked to the rest of the molecule. Additional proof for the structure of this sugar, whose absolute configuration was not determined, was obtained from acidic methanolysis of per-benzoyl-lipiarmycin A3 (1c) which afforded the dibenzoyl sugar derivative (12) and from acidic methanolysis of compound (1a) which yielded $1-O$-methyl-5-methylrhamnose (13a) which in turn gave the corresponding triacetate (13b) upon treatment with $\mathrm{Py}^{2}-\mathrm{Ac}_{2} \mathrm{O}$ (Scheme 3). The ' H n.m.r. data of these three sugars are given in Table 5. In compound (12) irradiation of the methyl protons at $\delta_{\mathrm{H}} 1.56\left(7^{\prime \prime \prime}-\mathrm{H}_{3}\right)$ in $\left[{ }^{2} \mathrm{H}_{6}\right]$ acetone $+\mathrm{D}_{2} \mathrm{O}$ enhanced $3^{\prime \prime \prime}-\mathrm{H}(8 \%)$ and $1^{\prime \prime \prime}-\mathrm{OMe}(4 \%)$, whereas irradiation of

Table 5. ${ }^{1} \mathrm{H}$ n.m.r. data for compounds (10b), (12), (13a), and (13b)

	(10b) ${ }^{\text {a }}$		$(12)^{b}$	(13a) ${ }^{\text {a }}$	$(13 \mathrm{~b})^{a}$
Protons	$\delta_{\text {H }} /$ p.p.m.	Proton	$\delta_{\mathrm{H}} /$ p.p.m.	$\delta_{\mathrm{H}} /$ p.p.m.	$\delta_{\boldsymbol{H} / \text { /p.p.m. }}$
$1{ }^{\prime}$	4.72	$1^{\prime \prime \prime}$	4.95	4.69	4.69
2^{\prime}	3.62	$2{ }^{\prime \prime \prime}$	5.64	3.97	5.47
3^{\prime}	5.19	$3{ }^{\prime \prime \prime}$	5.77	3.95	5.11
4^{\prime}	5.11	$4{ }^{\prime \prime \prime}$	5.69	3.70	5.23
5	3.79	$6^{\prime \prime \prime}$	1.34	$1.32^{\text {c }}$	1.32
6^{\prime}	1.22	$7{ }^{\prime \prime \prime}$	1.56	$1.34{ }^{\text {c }}$	1.32
$1^{\prime}-\mathrm{OMe}$	$3.47{ }^{\text {c }}$	$9{ }^{\prime \prime \prime}$	2.51		
$2^{\prime}-\mathrm{OMe}$	$3.39{ }^{\text {c }}$	$10^{\prime \prime \prime}$	$1.04{ }^{\text {c }}$		
3^{\prime}-OAc	$2.07{ }^{\text {d }}$	$11^{\prime \prime \prime}$	$0.95{ }^{\text {c }}$		
4^{\prime}-OAc	$2.04{ }^{\text {d }}$	1'"-OMe	3.53	3.41	3.48
		2 "'-OR	7.3-8.2	ca. 2.0	$2.19{ }^{\text {c }}$
		3"'-OR	7.3-8.2	ca. 2.0	$2.06{ }^{\text {c }}$
		4"'-OR		ca. 2.0	$1.99{ }^{\text {c }}$
$J(\mathrm{HH}) / \mathrm{Hz}$	(10b)	$J(\mathrm{HH}) / \mathrm{Hz}$	(12)	(13a)	(13b)
1',2'	1.9	$1^{\prime \prime \prime}, 2^{\prime \prime \prime}$	1.9	1.2	1.4
1',5'	0.7	2"', $3^{\prime \prime \prime}$	3.0	3.1	3.3
$2^{\prime}, 3^{\prime}$	3.1	3", $4^{\prime \prime \prime}$	10.5	9.0	10.6
$3^{\prime}, 4^{\prime}$	10.2	9"', $10^{\prime \prime \prime}$	6.8		
$4^{\prime}, 5^{\prime}$	9.4	9"',11"'	6.8		
$5^{\prime}, 6^{\prime}$	6.3				

${ }^{a}$ In $\mathrm{CDCl}_{3} .{ }^{b}$ In $\left[{ }^{2} \mathrm{H}_{6}\right.$]acetone. ${ }^{\text {c.d }}$ Assignments within each column may be interchanged.

Scheme 3. Reagents: i, HCl-saturated $\mathrm{MeOH} ; \mathrm{ii}, \mathrm{MeOH} 0.5 \mathrm{M}_{2} \mathrm{SO}_{4}$, N_{2}; iii, $\mathrm{Py}-\mathrm{Ac}_{2} \mathrm{O}$
the methyl protons at $\delta_{\mathrm{H}} 1.34\left(6^{\prime \prime \prime}-\mathrm{H}_{3}\right)$ led to enhancement of $4^{\prime \prime \prime}-\mathrm{H}(8.5 \%)$, the n.O.e. experiments proving that the sugar is in this case an x-anomer.

Fragment (6). This fragment showed the presence of three vinylic protons at $\delta_{\mathbf{H}} 7.24,6.63$, and 5.96 , assigned to $3-, 4$-, and 5 -H respectively, which were part of an x-methyleneoxy dienoic moiety. In fact, decoupling experiments demonstrated that 3-H was allylically coupled to $5-\mathrm{H}$ and to the oxygen-bearing $\mathrm{C}-19$ proton at $\delta_{\mathrm{H}} 4.61$, and vicinally coupled to $4-\mathrm{H}\left({ }^{4} J 0.8,{ }^{4} J 0.5\right.$, and ${ }^{3} J 11.3 \mathrm{~Hz}$, respectively). In addition irradiation of $3-\mathrm{H}$ and $19-\mathrm{H}_{2}$ simplified the resonance at $\delta_{\mathrm{C}} 167.16(\mathrm{C}-1)$, whose chemical shift well agreed for a conjugate lactone carbonyl carbon atom. The presence of coupling constants between 4 - and $5-\mathrm{H}$ and 6 -methylene protons, which in turn were both coupled to the signal at $\delta_{\mathrm{H}} 4.28(7-\mathrm{H})$, were accounted for by the proposed structure of this fragment.

Fragment (7). The chemical shift values and the magnitudes of the geminal and vicinal coupling constants presented by $16-\mathrm{H}_{2}$, $17-\mathrm{H}, 25-\mathrm{H}$, and $26-\mathrm{H}_{3}$ (see Tables 2 and 3) pointed to the presence of a $\mathrm{C}(16) \mathrm{H}_{2} \mathrm{C}(17) \mathrm{H}(\mathrm{OR}) \mathrm{C}(25) \mathrm{H}(\mathrm{OH}) \mathrm{Me}$ grouping which was allocated to $\mathrm{C}-15$ because both 16 -methylene pro-
tons ($\delta_{\mathrm{H}} 2.75$ and 2.43) were vicinally coupled to the 15 -olefinic proton at $\delta_{\mathrm{H}} 5.63$. Moreover, the coupling constants between $13-$ and $15-\mathrm{H}, 13-\mathrm{H}$ and $23-\mathrm{H}_{3}$, and $15-\mathrm{H}$ and $24-\mathrm{H}_{3}\left[{ }^{4} J(\mathrm{HH})\right.$ $1.0,{ }^{4} J(\mathrm{HH}) 1.3$, and ${ }^{4} J(\mathrm{HH}) 1.3 \mathrm{~Hz}$, respectively] and the couplings between $\mathrm{C}(24)$ and each of $13-$ and $15-\mathrm{H}\left[{ }^{3} J(\mathrm{CH}) 4\right.$ and ${ }^{3} J(\mathrm{CH}) 8.5 \mathrm{~Hz}$, respectively] indicated the presence of the $\mathrm{C}(12)-\mathrm{C}(15)$ diene moiety.

Fragment (8). Besides the five protons already assigned to $6-\mathrm{H}_{2}, 16-\mathrm{H}_{2}$, and $9 "-\mathrm{H}$, the region between 2.4 and 2.8 p.p.m. contained another proton, assigned to $10-\mathrm{H}$, which was shown by n.O.e. experiments carried out on $20-$ and $23-\mathrm{H}_{3}$ to resonate at $\delta_{\mathrm{H}} 2.63$. Selective irradiation of $10-\mathrm{H}$ resulted in decoupling of the resonances at $\delta_{\mathrm{H}} 5.22$ and 3.73 , assigned to the 9 -vinylic and 11-ethereal protons, and affected the multiplet at δ_{H} $1.93(21 \mathrm{a}-\mathrm{H})$, the other 21 b -methylene proton at $\delta_{\mathrm{H}} 1.25$ being obscured by methyl signals. Moreover, the multiplicity exhibited by the 3 H triplet at $\delta_{\mathrm{H}} 0.82\left(22-\mathrm{H}_{3}\right)$, which was vicinally coupled to both $21-\mathrm{H}_{2}$, was indicative of the presence of an ethyl moiety, whereas the allylic coupling between $9-\mathrm{H}$ and the 3 H signal at $\delta_{\mathrm{H}} 1.66\left(20-\mathrm{H}_{3}\right)$ placed $20-\mathrm{H}_{3}$ at $\mathrm{C}-8$. A clear analysis of $10-\mathrm{H}$ followed from the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of compound (3b) in which $10-\mathrm{H}$ presented four vicinal couplings of $10.6,9.3,3.2$, and 9.3 Hz to $9-\mathrm{H}, 11-\mathrm{H}$, and $21-\mathrm{H}_{2}$, respectively, the latter two couplings confirming that the ethyl group is located at C-10.

Connection Between the Various Fragments.-At this stage of the structural analysis it was necessary to assemble the lipiarmycin A3 (1a) structure by interconnecting the fragments (4)-(8). Evidence for the linkage between $C(7)$ and $C(8)$ followed from the allylic coupling arising between $7-$ and $9-\mathrm{H}$, and from the three-bond coupling between $\mathrm{C}-20$ and $7-\mathrm{H}$ [${ }^{4} J(\mathrm{HH}) 1.6$ and ${ }^{3} J(\mathrm{CH}) 2 \mathrm{~Hz}$], whereas the linkage between $\mathrm{C}(11)$ and $\mathrm{C}(12)$ derived from the allylic coupling between 11and $13-\mathrm{H}$, and from the three-bond coupling between $\mathrm{C}(23)$ and $11-\mathrm{H}\left[{ }^{4} J(\mathrm{HH}) 0.5\right.$ and ${ }^{3} J(\mathrm{CH}) 4 \mathrm{~Hz}$; the final lactone ring structure was provided by the aforementioned hydrolysis of compound (1a) affording (3a).

We can now turn our attention to the interconnections between the two sugar units (4) and (5) and the $C(11)$ and $C(19)$ carbon atoms of the aglycone. Alkaline hydrolysis of compound (1a) followed by strong acidification gave a mixture of two compounds (14) and (15), diastereoisomeric at C-15 (Scheme 4), which could not be separated. Their formation could be explained by lactone ring opening followed by nucleophilic OH attack at C-15, which caused, via a shift of the $\mathrm{C}(12)$ and $\mathrm{C}(14)$ double bonds to $C(11)$ and $C(13)$ positions, the expulsion of the 5-Me-rhamnose moiety (5), which must therefore be originally linked at $\mathrm{C}-11$. The n.O.e. experienced by $11-\mathrm{H}(5 \%)$ in compound (1a) by irradiation of the $1^{\prime \prime \prime}$ - anomeric proton in $\left[{ }^{2} \mathrm{H}_{6}\right.$]acetone $+\mathrm{D}_{2} \mathrm{O}$ gave further support to the above evidence. The remaining $2-O$-methylrhamnosyl moiety (4) must then be linked at $\mathrm{C}-19$. The n.O.e. experienced by the l^{\prime} anomeric proton (2%) by irradiation of $19 \mathrm{~b}-\mathrm{H}$ in $\left[{ }^{2} \mathrm{H}_{6}\right.$]acetone $+\mathrm{D}_{2} \mathrm{O}$ confirmed the close proximity of these two protons. A similar diene shift with expulsion of the 5-methylrhamnose unit (5) (Scheme 4) was also observed by treatment of compound (1a) with a culture of Aspergillus niger ATCC 10549, which stereoselectively afforded the $15-\mathrm{OH}$ compound (16) without lactone ring opening; the same compound, as an epimeric mixture at $\mathrm{C}-15$, was obtained together with (13a) during the treatment of (1a) with methanolic $0.25 \mathrm{~m}_{2} \mathrm{SO}_{4}$.

Accordingly, comparison of the ${ }^{1} \mathrm{H}$ n.m.r. spectrum of compound (16) and the spectrum of the mixture of compounds (14) and (15), with that of compound (1a) revealed the lack of the resonances ascribed to the 5 -methylrhamnose and the downfield shift exhibited by $10-\mathrm{H}$ ($\delta 0.58$ p.p.m.), reflecting its diallylic nature. This proton, which is vicinally coupled to the 9 -olefinic

(14) and (15)
$1 i$
(1a)

(16)

Scheme 4. Reagents: i, $5 \% \mathrm{NaOH}, \mathrm{N}_{2}$, conc. HCl ; ii, Aspergillus niger ATCC 10549
proton at $\delta_{\mathrm{H}} 5.35$ as in compound (1a), presented, in fact, a new vicinal coupling to the olefinic proton at $\delta_{\mathrm{H}} 5.28(11-\mathrm{H})$. The latter, in turn, is part of the $\mathrm{C}(11) \mathrm{HR}=\mathrm{C}(12) \mathrm{MeC}(13) \mathrm{H}=$ $\mathrm{C}(14) \mathrm{MeR}$ diene, as suggested by the allylic coupling between $11-$ and $13-\mathrm{H}, 11-\mathrm{H}$ and $23-\mathrm{H}_{3}$, and $13-\mathrm{H}$ and $24-\mathrm{H}_{3}$ (see Table 3). Furthermore, irradiation of $13-\mathrm{H}$ and $24-\mathrm{H}_{3}$ indicated that these protons interact via a four-bond coupling with the resonance at $\delta_{\mathrm{H}} 5.00$ which was then assigned to $15-\mathrm{H}$. Its chemical shift was in agreement with that of an allylic carbynol proton, whereas the upfield shift exhibited by the $16-\mathrm{H}_{2}$ protons when compared with their chemical shift values in compound (1a) ($\delta-0.61$ and -0.72 p.p.m.) indicated that they were no longer adjacent to a double bond.

The lactone ring opening for compounds (14) and (15) emerged from the upfield shift experienced by $17-\mathrm{H}$ relative to compound (16) ($\delta-1.21$ p.p.m.). Finally, the diastereoisomeric relationship between compounds (14) and (15) was deduced from the close similarity of their ${ }^{1} \mathrm{H}$ n.m.r. spectra except for the signals due to the $16-\mathrm{H}_{2}$ which are in proximity to the epimeric hydroxy-bearing C-15.

Configurations of the Double Bonds.-The magnitude of the ${ }^{1} \mathrm{H}-{ }^{1}$ Hcoupling constant between 4 - and $5-\mathrm{H}\left[{ }^{3} J(\mathrm{HH}) 14.8\right.$ Hz] in (1a) and its relevant derivatives (Table 3) established the trans configuration for the $\mathrm{C}(4)=\mathrm{C}(5)$ double bond. For the trisubstituted double bonds, namely those between $\mathrm{C}(2)$ and $\mathrm{C}(3)$, $C(8)$ and $C(9), C(12)$, and $C(13)$, and $C(14)$ and $C(15)$, there is no coupling constant information and the geometries were established by using n.O.e. effects. Thus, the n.O.e.s between 3-
and $5-\mathrm{H}(7.5 \%)$ and $4-\mathrm{H}$ and $19-$ methylene protons (3.5 and 2%) indicated the E configuration for the $\mathrm{C}(2)=\mathrm{C}(3)$ double bond, the n.O.e.s between $20-\mathrm{H}_{3}$ and $10-\mathrm{H}(4.5 \%$), and 7 - and $9-\mathrm{H}$ (10%) the E configuration of the $\mathrm{C}(8)=\mathrm{C}(9)$ double bond, and the n.O.e.s between $11-$ and $13-\mathrm{H}(3 \%)$, and $24-\mathrm{H}_{3}$ and $16-\mathrm{H}_{2}$ (1.5 and 2.5%) the E, E configurations of the $\mathrm{C}(12)=\mathrm{C}(15)$ diene. Moreover, in the fully ${ }^{1} \mathrm{H}$-coupled ${ }^{13} \mathrm{C}$ n.m.r. spectrum of compound (1a), the quartets centred at $\delta_{\mathrm{C}} 15.19,13.78$ and 17.44 , due to $20-, 23-$, and $24-\mathrm{H}_{3}$, respectively, showed additional fine structure in that each leg of each quartet presented a three-bond coupling [${ }^{3} J(\mathrm{CH}) 8.5 \mathrm{~Hz}$] with 9-, 13-, and $15-\mathrm{H}$, respectively. These values ${ }^{7}$ are in agreement for a trans relationship between each H, Me pair. Furthermore, the value ${ }^{7}$ of the coupling between $3-\mathrm{H}$ and $\mathrm{C}(1)\left[{ }^{3} J(\mathrm{CH}) 7 \mathrm{~Hz}\right]$ is indicative of a cis geometry between $\mathrm{C}(1) \mathrm{OOR}$ and $3-\mathrm{H}$.

In conclusion, the structures depicted in Figure 1 are assigned to lipiarmycin, the two components A3 (1a) and A4 (2) being differentiated by a methylene group on the phenyl ring. The 18-membered lactone ring contains two independent conjugate diene systems, and a number of hydroxy and methyl functions. Two neutral sugars are linked through hemi-acetalic bonds to the core aglycone. One is 2-O-methyl-d-rhamnose, linked as the β-anomer, which is esterified by homodichloro-orsellinic acid in (1a) and dichloro-orsellinic acid in (2). This sugar has been found as the L -form in the macrolide antibiotics aranciamycin, ${ }^{6}$ scopamycin A, ${ }^{8}$ and leucanicidin, ${ }^{9}$ and in the anthracycline antibiotic steffimycin, ${ }^{10}$ whereas the D -form is present in specific mycosides produced by certain strains of Mycobacteria and Myxobacteria, ${ }^{6}$ and by Bacterium faecalis alcaligenes. ${ }^{11}$ The other sugar is the hitherto undescribed 5-methylrhamnose, also linked as the β-anomer, which is esterified with isobutyric acid.

The biosynthesis of lipiarmycin has not been investigated but the structure assigned to the aglycone part may be derived from the incorporation of 3 acetate, 5 propionate and 1 butyrate units.

Therefore, lipiarmycin appears to be a new macrocyclic antibiotic somewhat different from the classical macrolides.

Experimental

U.v. spectra were measured in 95% EtOH on a Beckmann DK-2 spectrophotometer and i.r. spectra with a Perkin Elmer 137 instrument. Mass spectra were taken at 70 eV on a VG-ZAB2 instrument equipped with a f.a.b. source. ${ }^{1} \mathrm{H}(300.13 \mathrm{MHz})$ and ${ }^{13} \mathrm{C}(75.47 \mathrm{MHz})$ N.m.r. spectra were recorded on a Bruker CXP-300 spectrometer. Chemical shifts are in p.p.m. (δ) from SiMe_{4} as internal standard. N.O.e. difference spectra were obtained by subtracting alternatively right-off resonance-free induction decays (f.i.d.s) from right-on resonance-induced f.i.d.s. N.O.e. values reported in the test have only qualitative significance.

Column chromatography was performed with Merck silica gel $(0.04-0.063 \mathrm{~mm})$ at medium pressure. Unless otherwise indicated, the purity of products was checked by t.l.c., n.m.r. and mass spectra, and was deemed sufficient for the purpose of structural elucidation. M.p.s were measured on a Kofler apparatus and are uncorrected.
H.p.l.c. was run with a Constametric III pump (LDC Milton Roy) equipped with a 20μ loop injector Reodyne 7125 and a Perkin-Elmer LC-15 detector at 254 nm . Column: Spheri-5 Brownlee Labs RP-8 ($250 \times 4.6 \mathrm{~mm}$). Eluant: $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$ (3:1). Injection: 20μ. Flow rate $1 \mathrm{ml} / \mathrm{min}$.

Separation of Lipiarmycin A3 (1a) and A4 (2).-Lipiarmycin ${ }^{2}$ (500 mg) was adsorbed on the top of a chromatographic column filled with silica gel and eluted under N_{2} pressure with EtOAchexane (3:1) to give the pure metabolite (1a) $(250 \mathrm{mg})$. Residual material was eluted with EtOAc to yield compounds (1a) and (2) as a $1: 1$ mixture (200 mg); this was subjected to flash
chromatography on RP-C18 silica gel using acetone-water ($2: 1,0.1 \% \mathrm{Na}_{2} \mathrm{SO}_{4}$) as eluant to give pure compounds. Lipiarmycin A3 (1a) crystallized from EtOAc-hexane as white crystals, m.p. $161-165^{\circ} \mathrm{C} ;[x]_{\mathrm{D}}-6.2^{\circ}$ (c 2.0 in MeOH); t.l.c. [silanized silica gel plates 60 HF254 Merck; acetone-water (1:1, $\left.\left.0.1 \% \mathrm{Na}_{2} \mathrm{SO}_{4}\right)\right] R_{\mathrm{F}} 0.45$; h.p.l.c. $R_{\mathrm{T}} 2.33 \mathrm{~min}$. Some physical constants of compound (1a) have already been reported. ${ }^{2.4}$ The molecular formula was determined by ${ }^{13} \mathrm{C},{ }^{1} \mathrm{H}$ n.m.r. data and fast atom bombardment (f.a.b.) mass spectral analysis, which showed a molecular species at $m / z 1079\left(M^{+}+\mathrm{Na}\right)$ (Found: $\mathrm{C}, 58.9 ; \mathrm{H}, 6.9 ; \mathrm{Cl}, 6.5 . \mathrm{C}_{52} \mathrm{H}_{74} \mathrm{Cl}_{2} \mathrm{O}_{18}$ requires $\mathrm{C}, 59.03 ; \mathrm{H}, 7.05$; $\mathrm{Cl}, 6.70 \%$); ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ N.m.r. data are reported in Tables $1-3$. Lipiarmycin $A 4$ (2) was isolated as a white solid, m.p. 138$140^{\circ} \mathrm{C}$ (EtOAc-hexane); $[x]_{\mathrm{D}}-9.4^{\circ}(c 0.15$ in MeOH); t.l.c. [as for compound (1a)] $R_{\mathrm{F}} 0.58$; h.p.l.c. $R_{\mathrm{T}} 2.03 \mathrm{~min}$; f.a.b.-m.s. $m / z 1065\left(M^{+}+\mathrm{Na}\right)$ (Found: C, $58.5 ; \mathrm{H}, 6.8 ; \mathrm{Cl}$, 6.7. $\mathrm{C}_{51} \mathrm{H}_{72} \mathrm{Cl}_{2} \mathrm{O}_{18}$ requires C, $58.67 ; \mathrm{H}, 6.97 ; \mathrm{Cl}, 6.79 \%$). ${ }^{1} \mathrm{H}$ N.m.r. data are reported in Tables 2 and 3.

Acetylation of Lipiarmycin A3 (1a).-Compound (1a) (200 mg), dissolved in pyridine (1 ml) and $\mathrm{Ac}_{2} \mathrm{O}(2 \mathrm{ml})$ was left for 12 h at room temperature. The reaction mixture was dissolved in chloroform, and the solution was successively stirred with saturated aqueous NaHCO_{3}, water, saturated aqueous KHSO_{4}, and water and finally dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$. Preparative t.l.c. (p.l.c.) [silica gel; EtOAc-hexane (1:1)] yielded the peracetate (1b) as a colourless amorphous solid, m.p. 115$118{ }^{\circ} \mathrm{C}$; $[x]_{\mathrm{D}}-28.9^{\circ}\left(c 0.5\right.$ in CHCl_{3}) (Found: C, 58.4; H, 6.4. $\mathrm{C}_{66} \mathrm{H}_{88} \mathrm{Cl}_{2} \mathrm{O}_{25}$ requires C, $58.62 ; \mathrm{H}, 6.56 \%$). ${ }^{1} \mathrm{H}$ N.m.r. data are reported in Tables 2 and 3.

Perbenzoylation of Lipiarmycin A3 (1a).-Compound (1a) $(300 \mathrm{mg})$ was treated with pyridine (5 ml) and benzoyl chloride $(0.5 \mathrm{ml})$. After 30 min the precipitate was filtered off, washed with $\mathrm{Et}_{2} \mathrm{O}$, and crystallized from EtOAc-hexane. Compound (1c) was obtained as a white solid, m.p. $118-122^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ $-76.2^{\circ}\left(c 0.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \lambda_{\text {max. }}$ 232, 270, and 280sh nm ($\varepsilon 157000$, 32700 , and 26300); $v_{\text {max. }}$ (KBr) 1760 (lactone CO), and 1725 (aryl ester) cm^{-1} (Found: C, 67.6; H, 5.5. $\mathrm{C}_{101} \mathrm{H}_{102} \mathrm{Cl}_{2} \mathrm{O}_{25}$ requires C, 67.89; H, 5.75%).

Methyl 3,5-Dichloro-2,4-dihydroxy-6-methylbenzoate from Lipiarmycin A4 (2).-Compound (2) (100 mg) was treated with 0.5 M KOH in MeOH for 2 days at room temperature. Evaporation of the solvent, neutralization and extraction of the solution with $\mathrm{Et}_{2} \mathrm{O}$ gave after p.l.c. with EtOAc -hexane (1:4) a few mgs of the title compound, m.p. 106-109 ${ }^{\circ} \mathrm{C}, m / z 250 / 252$ (M^{+}), (Found: $M^{+}, 249.9828 \pm 0.007 . \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{Cl}_{2}{ }^{35} \mathrm{O}_{4}$ requires $M, 249.9798) ; \delta_{\mathrm{H}}\left(90 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) 2.60\left(3 \mathrm{H}, \mathrm{s}, 6^{\prime \prime}-\mathrm{Me}\right), 4.00$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$), $6.45\left(1 \mathrm{H}\right.$, br s, $\left.4^{\prime \prime}-\mathrm{OH}\right), 10.05\left(1 \mathrm{H}, \mathrm{s}, 2^{\prime \prime}-\mathrm{OH}\right)$.

Alkyaline Hydrolysis of Lipiarmycin A3 (1a).-Compound (1a) $(300 \mathrm{mg})$ was treated with 0.5 m KOH for 20 h at room temperature under an N_{2} stream. The reaction mixture was acidified with diluted HCl and extracted with EtOAc. Work-up and t.l.c. using $\mathrm{CHCl}_{3}-\mathrm{MeOH}(5: 1)$ as eluant reveaied a more polar compound (3a) which was purified from EtOAc-hexane. Compound (3a) was a glassy solid, m.p. $108-110^{\circ} \mathrm{C},[x]_{\mathrm{D}}$ $-49.5^{\circ}\left(c 0.1\right.$ in MeOH); $\lambda_{\text {max. }} 228,263$, and $316 \mathrm{~nm}(\varepsilon 33600$, 29000 , and 5200); f.a.b.-m.s. $m / z 1027\left(M^{+}+\mathrm{Na}\right)$ (Found: C, $56.8 ; \mathrm{H}, 7.1 ; \mathrm{C}_{48} \mathrm{H}_{70} \mathrm{Cl}_{2} \mathrm{O}_{18}$ requires $\mathrm{C}, 57.31 ; \mathrm{H}, 7.01 \%$).

Methylation of Compound (3a).-Compound (3a) (50 mg) dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$, was treated with an excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the mixture was allowed to remain at $-50^{\circ} \mathrm{C}$ for 15 min . The excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was blown off with an N_{2} stream and the solution evaporated to dryness. The residue
was submitted to p.l.c. using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(15: 1)$ as eluant to give the trimethyl derivative (3b), m.p. $100-105^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ hexane). ${ }^{1} \mathrm{H}$ N.m.r. data are reported in Tables 2 and 3.

Acetylation of Compound (3a).-Compound (3a) (50 mg) was acetylated with $\mathrm{Py}-\mathrm{Ac}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$ overnight and standard workup gave the peracetate (3c), m.p. $108-112{ }^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}-\right.$ hexane); $[x]_{\mathrm{D}}-35^{c}(c 2$ in MeOH$) .{ }^{1} \mathrm{H}$ N.m.r. data are reported in Tables 2 and 3.

Hydrolysis of Compound (9) to Compounds (10a) and (11).Compound (9) (200 mg), obtained by treating compound (1a) with saturated methanolic HCl as previously described, ${ }^{4}$ was dissolved in $\mathrm{MeOH}(10 \mathrm{ml})$ and treated with $\mathrm{MeONa}(100 \mathrm{mg})$ at $60^{\circ} \mathrm{C}$ for 2 h (t.l.c. control). Evaporation of the solvent, dilution, acidification and extraction with EtOAc gave a mixture which by p.l.c. using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (9:1) as eluant afforded compounds (10a) and (11). The more polar compound was 1,2-O-dimethy/-D-x-rhamnose (10a), isolated as an oil, $[x]_{\mathrm{D}}$ $+22.4^{\circ}\left(c 0.2\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; m / z 192\left(M^{+}\right), 160\left(M^{+}-32\right)$, and $130 ; \delta_{\mathrm{H}}\left(\mathrm{CDCl}_{3} ; 90 \mathrm{MHz}\right), 1.30\left(3 \mathrm{H}, \mathrm{d}, 6.2 \mathrm{~Hz}, 7^{\prime}-\mathrm{H}_{3}\right), c a .2 .2$ ($2 \mathrm{H} \mathrm{br}, 3^{\prime}$ - and $4^{\prime}-\mathrm{OH}$), 3.3-3.8 ($4 \mathrm{H}, \mathrm{m}, 2^{\prime}-, 3^{\prime}-, 4^{\prime}-$, and $5^{\prime}-\mathrm{H}$), 3.38 and $3.49(6 \mathrm{H}, \mathrm{s}, 2 \times \mathrm{OMe})$, and $4.75\left(1 \mathrm{H}\right.$, br s, $\left.1^{\prime}-\mathrm{H}\right)$. Compound (11) was identified as 2,4-dichloro-5-ethylresorcinol by direct comparison with an authentic sample previously isolated. ${ }^{4}$

Acetylation of Sugar (10a).-Compound (10a) (10 mg) was acetylated with $\mathrm{Py}-\mathrm{Ac}_{2} \mathrm{O}$ and standard work-up yielded compound (10 b) (8 mg) as crystals, m.p. $55^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}$-hexane); $[x]_{\mathrm{D}}+64.4^{\circ}\left(c 0.7\right.$ in MeOH); $m / z 276\left(M^{+}\right)$(Found C, 52.05; H, 7.2. $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{O}_{7}$ requires $\mathrm{C}, 52.16 ; \mathrm{H}, 7.30 \%$). ${ }^{1} \mathrm{H}$ N.m.r. data are reported in Table 5.

Acidic Degradation of Compound (1c).-A solution of compound (1c) $(300 \mathrm{mg})$ in dry $\mathrm{MeOH}(10 \mathrm{ml})$ was treated with HCl -saturated $\mathrm{MeOH}(1 \mathrm{ml})$ and the mixture was refluxed for 10 min . Solvent was removed under reduced pressure and the residue was chromatographed on p.l.c. with EtOAc-hexane (1:2) as eluant to give 1-O-methyl-2,3-O-dibenzoyl-4-O-iso-butyryl-5-methyl-x-rhamnose (12) as white crystals, m.p. 115$118^{\circ} \mathrm{C} ;[x]_{\mathrm{D}}-83.7^{\circ}(c 0.2$ in MeOH$), \lambda_{\text {max. }}$ 197, 225, and 266 nm ($\varepsilon 20100,26250$, and 4400); $v_{\text {max. }}$ (Nujol) 1735 (aliphatic ester) and $1700 \mathrm{~cm}^{-1}$ (aryl esters); $m / z 470\left(M^{+}\right), 456\left(M^{+}-14\right), 440$, 412,352 , and 247 (Found: C, 66.2; H, 6.3. $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{O}_{8}$ requires C , 66.37 ; $\mathrm{H}, 6.43 \%$). ${ }^{1} \mathrm{H}$ N.m.r. data are reported in Table 5.

Acidic Hydrolysis of Compound (1a).-Compound (1a) (300 $\mathrm{mg})$ was treated with $0.5 \mathrm{M}_{2} \mathrm{SO}_{4}$ in $\mathrm{MeOH}(1: 2)(15 \mathrm{ml})$ for 5 h at $60{ }^{\circ} \mathrm{C}$ under N_{2}; the solvent was removed and the residue was added to water (10 ml), extracted first with $\mathrm{Et}_{2} \mathrm{O}$ and then with BuOH . Work-up and p.l.c. of the ethereal extracts using EtOAc-hexane ($1: 1$) as eluant gave compound (16) (100 mg) as an inseparable mixture of $\mathrm{C}-15$ epimers. P.l.c. of the BuOH extract with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (7:1) as eluant afforded $1-\mathrm{O}-$ methyl-5-methyl- α-rhamnose (13a) (5 mg) as a glassy solid, m.p. $90-95^{\circ} \mathrm{C} ;[x]_{\mathrm{D}}+46.6^{\circ}(c 0.15$ in MeOH$) ;{ }^{1} \mathrm{H}$ n.m.r. data are reported in Table 5. Compound (16) had m.p. $130-135{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ $-72.7^{\circ}\left(c 1\right.$ in MeOH); $\lambda_{\text {max. }} 230,269$, and $320 \mathrm{~nm}(\varepsilon 34200$, 23600 , and 4700); $v_{\text {max }}$. (KBr) 1740 (lactone CO), and 1690 cm^{-1} (aryl ester) (Found: C, 59.2; H, 6.7. $\mathrm{C}_{41} \mathrm{H}_{56} \mathrm{Cl}_{2} \mathrm{O}_{13}$ requires $\mathrm{C}, 59.49 ; \mathrm{H}, 6.82 \%$).

Acetylation of Sugar (13a).-Compound (13a) (5 mg) was acetylated with $\mathrm{Py}-\mathrm{Ac}_{2} \mathrm{O}$ to yield after p.l.c. with EtOAchexane (1:2) as eluant the triacetyl derivative (13b) as crystals, m.p. $95-97^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane); $m / z 318\left(M^{+}\right), 303\left(M^{+}\right.$ $-15)$, $286\left(M^{+}-32\right)$, and $258\left(M^{+}-60\right)$ (Found: C, 52.5; H, 6.4. $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{8}$ requires $\mathrm{C}, 52.82 ; \mathrm{H}, 6.97 \%$). ${ }^{1} \mathrm{H}$ N.m.r. data are reported in Table 5.

Treatment of Lipiarmycin A3 (1a) with Aspergillus niger.-A pre-inoculum of a strain of A. niger ATCC 10549 was incubated in 5 Erlenmayer flasks (containing each 50 ml of medium) for 3 days at $24^{\circ} \mathrm{C}$ in a liquid culture containing malt extract-yeastglucose ($10,10,30 \mathrm{gl}^{-1}$) and the pH was corrected to 7 . After this time, compound (1a) (10 mg in 0.2 ml EtOH for flask) was added. After 24 h of incubation the liquid culture was extracted twice with EtOAc. P.l.c. using EtOAc-hexane (1:1) as eluant gave a single compound (16) $(10 \mathrm{mg})$, identical on t.l.c. with the compounds obtained by acidic hydrolysis as described above. ${ }^{1}$ H N.m.r. data are reported in Table 3.

Compounds (14) and (15) as Racemic Mixture at C-15.Compound (1a) (300 mg) was submitted to alkaline hydrolysis to give compound (3a) which was successively refluxed for 3 h in a mixture of concentrated $\mathrm{HCl}(1 \mathrm{ml})$ and $\mathrm{MeOH}(2 \mathrm{ml})$. Evaporation of the solvent, dilution and extraction with EtOAc gave by p.l.c. using $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}$ (9:1) as eluant, compounds (14) and (15) a mixture of $\mathrm{C}-15$ epimers, as a glassy solid, m.p. $90-95^{\circ} \mathrm{C}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$-hexane $) ;[x]_{\mathrm{D}}-21.3^{\circ}(c 1$ in MeOH$)$; $\lambda_{\text {max. }}$. $200,215,253$, and 312 nm ($\varepsilon 33600,32400,32800$ and 8200); (Found: C, $57.8 ; \mathrm{H}, 6.4 ; \mathrm{C}_{41} \mathrm{H}_{58} \mathrm{Cl}_{2} \mathrm{O}_{14}$ requires $\mathrm{C}, 58.22 ; \mathrm{H}$, 6.91%). ${ }^{1} \mathrm{H}$ N.m.r. data are reported in Table 3.

Acknowledgements

The authors thank Prof. A. Selva for the measurements and interpretation of the f.a.b.-m.s. spectra, Ms. E. Di Modugno and Dr. L. Pesce for skilful technical assistance, and Prof. G. G. Gallo for critical reading of the manuscript.

References

1 F. Parenti, H. Pagani, and G. Beretta, J. Antibiot., 1975, 28, 247.
2 C. Coronelli, R. J. White, G. C. Lancini, and F. Parenti, J. Antibiot., 1975, 28, 253.
3 S. Somma, G. Pirali, R. J. White, and F. Parenti, J. Antibiot., 1975, 28, 543 and literature cited in Ref. 4.
4 E. Martinelli, L. Faniuolo, G. Tuan, G. G. Gallo, and B. Cavalleri, J. Antibiot., 1983, 36, 1312.

5 K. Bock, I. Lundt, and C. Pedersen, Tetrahedron Lett., 1973, 1037.
6 W. Keller-Schierlein and A. Müller, Experientia, 1970, 26, 929.
7 U. Vogeli and W. von Philipsborn, Org. Magn. Reson., 1975, 7, 617.
8 J. B. McAlpine, J. W. Corcoran, and R. S. Egan, J. Antibiot., 1971, 24, 51.

9 A. Isogai, S. Sakuda, S. Matsumoto, M. Ogura, K. Furihata, H. Seto, and A. Suzuki, Agric. Biol. Chem., 1984, 48, 1379.
10 R. C. Kelly, I. Schletter, J. M. Koert, F. A. MacKellar, and P. F. Wiley, J. Org. Chem., 1977, 42, 3791.
11 G. M. Zdorovenko, Bioorg. Khim., 1981, 7, 103.

[^0]: - The numbering system for all derivatives is that used for lipiarmycin A3 (1a).

